题目描述
物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是—件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。
输入输出格式
输入格式:
第一行是四个整数n(l≤n≤100)、m(l≤m≤20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P(1<P<m),a,b(1≤a≤b≤n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。
输出格式:
包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。
输入输出样例
5 5 10 8 1 2 1 1 3 3 1 4 2 2 3 2 2 4 4 3 4 1 3 5 2 4 5 2 4 2 2 3 3 1 1 3 3 3 4 4 5
32
说明
【样例输入说明】
上图依次表示第1至第5天的情况,阴影表示不可用的码头。
【样例输出说明】
前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32。
_NOI导刊2010提高(01)
————————————————我是分割线——————————————
最短路+dp 好题
预处理每天的最短路,再dp选择。
可以用f[i]表示到第i天的时候最小费用,那么f[i]={f[j]+cost[j+1,i]+K}(0<=j<i),其中cost[i,j]表示由第i天到第j天都可以走得通的最短路。
这样求完之后再减去一个多余的K即可。(当然你也可以在预处理时做手脚)
1 /* 2 Problem: 3 OJ: 4 User: S.B.S. 5 Time: 6 Memory: 7 Length: 8 */ 9 #include10 #include 11 #include 12 #include 13 #include 14 #include 15 #include 16 #include 17 #include 18 #include 19 #include 20 #include 21 #include 22 #include 23 #include